
L O W - F R E Q U E N C Y M A G N E T O P L A S M A R E S O N A N C E I N M E T A L S 2529 

it possible to study the magnetoplasma resonance in a 

much broader class of metals than has been previously 

studied. The work shows the potential and the limita­

tions of this probeless technique for measuring the Hall 

coefficient and magnetoresistivity. 
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Cubic- and quartic-anharmonic contributions to the Debye-Waller factor of a Bravais lattice have been 
obtained in the classical limit. The contributions are of two types: One is proportional to the square of the 
absolute temperature, and the other is proportional to the cube of the temperature. This is in contrast to 
the linear dependence on the absolute temperature of the Debye-Waller factor in the harmonic approxima­
tion. The first type of anharmonic contributions represents just the anharmonic corrections to the mean 
square amplitude of vibration of an atom, while the second type of term is related to the thermal average 
of the fourth power of an atomic displacement. These results have the consequence that with the anharmonic 
contributions included, the Debye-Waller factor for a cubic crystal is no longer isotropic in the components 
of the scattering vector, although it possesses cubic symmetry. The anharmonic contributions are evaluated 
numerically for a fee crystal with nearest-neighbor, central-force interactions. The anharmonic contribu­
tions to the intensity of x rays scattered by one-phonon processes are discussed briefly. 

I. INTRODUCTION 

THE intensity of x rays scattered by the thermal 
vibrations of a monatomic Bravais lattice is 

proportional to the sum1 

IV 
-xao]+*K.[u(o-u(/')]}, (i.i) 

where x(7) is the position vector of the Zth unit cell 
in the crystal and u(/) is the displacement of the /th 
atom from its equilibrium position. The vector K is 
given by 

K = ( 2 T A ) ( 8 - S 0 ) , (1.2) 

where So and s are unit vectors in the directions of the 
normals to the wave fronts of the incoming and scat­
tered x rays, respectively, while X is the wavelength of 
the x rays. 

The displacements {u(/)} are time dependent so 
that the expression (1.1) gives the instantaneous in­
tensity. The observed intensity can be regarded as the 
average of (1.1) over a time long compared with the 
period of the atomic vibrations but short on a macro­
scopic scale. However, it is usually easier in statistical 
mechanical problems to replace time averages by en­
semble averages, and this is the procedure we follow 
here. Thus, to obtain the expression for the observed 

1 R. W. James, The Optical Principles of the Diffraction of X-
Rays (G. Bell and Sons, London, 1954), Chap. V." To obtain the 
intensity in electron units the sum J must be multiplied by | /0 |2 , 
where / 0 is the atomic scattering factor. 

scattered intensity we must evaluate the thermal 
average, 

<exp{iK-[u(0- i i ra> 

J exp{- /3ff+*K-[u(0-u(O]}^ 

/ exp(-

-, (1-3) 

/3H)dQ 

where H is the lattice Hamiltonian and d£l is the appro­
priate volume element of phase space. 

The expression given by Eq. (1.3) represents the 
thermal average calculated in the classical or "high-
temperature" limit. We have chosen to work in this 
limit because the effects we are studying in this paper 
are expected to be largest at high temperatures. 

In the case that the lattice Hamiltonian is that 
appropriate to a harmonic crystal, in which case we 
denote it by Ho, the average given by Eq. (1.3) was 
evaluated first in 1914 by Debye,2 whose analysis was 
subsequently corrected by Faxen3 and by Waller.4 

However, no crystal is truly harmonic and the effects 
of anharmonic terms in the lattice Hamiltonian on all 
thermal properties of solids become more important as 

! P. Debye, Ann. Physik 43, 49 (1914). 
[ H. Faxe'n, Ann. Physik 54, 615 (1918). 
1 1 . Waller, Z. Physik 17, 398 (1923). 
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the temperature increases. In 1927, Waller5 investi­
gated the effect of cubic anharmonic terms on the aver­
age in Eq. (1.3). His results were applied to a rather 
nonphysical model of a crystal and hence can only be 
regarded as suggestive. In addition, for Bravais lattices 
it is known that the quartic anharmonic terms give con­
tributions which are of the same order of magnitude as 
the cubic term, so that their effects should not be 
ignored. 

In this paper we calculate the leading anharmonic 
contributions to the thermal average in Eq. (1.3). In 
particular, we are interested in those terms in the aver­
age which are independent of both / and /', the zero-
phonon terms in quantum-mechanical language, since 
these comprise the so-called Debye-Waller factor, 
which gives the effect of the thermal motion on the 
intensity of the Bragg reflections. 

When the greatest portion of this paper had been 
completed, we learned of a paper on the same subject 
by Hahn and Ludwig.6 The emphasis in their paper, 
however, is on the intensity of the x rays scattered by 
one-phonon processes, while we have considered pri­
marily the Debye-Waller factor. Also, the methods em­
ployed to calculate the scattered x-ray intensity differ 
somewhat between the two papers, and we have carried 
out a numerical evaluation of the anharmonic contribu­
tions to the Debye-Waller factor for a simple model of 
a three-dimensional crystal in this paper. We are 
grateful to Dr. Hahn and Dr. Ludwig for bringing 
their work to our attention. 

As an introduction to the somewhat more complex 
anharmonic calculations to be carried out in succeeding 
sections we present in the remainder of this section a 
brief calculation of the thermal average (1.3) in the 
harmonic approximation. In this case it is convenient 

to expand the displacement component ux(l) in terms 
of (complex) normal coordinates 

1 

«*(/)= £ «,(k/)g(iyv*ik-x(0. 
(NM)m w 

(1.4) 

In this equation M is the atomic mass, ex(kj) is the x 
component of an eigenvector of the dynamical matrix, 
j labels the branches of the frequency spectrum, and 
the allowed values of the wave vector k are uniformly 
distributed throughout a unit cell of the reciprocal 
lattice. The expression K - [ U ( / ) — U ( / ' ) ] in terms of the 
normal coordinates becomes 

K- [U(0-U( / ' ) ] 

1 
= EC«c-e(k i ) ] (e ! ' i k - x ( , ) -« 1 ' i k - " ( ' ' ) )C(k i ) 

0VAf)1/2 v 

=zc(ki)e(kj). 
kj 

(1.5) 

This equation defines the coefficient C(kj). Although it 
is not explicitly expressed, it should be kept in mind 
that it is a function of both I and /'. 

The Hamiltonian in the harmonic approximation 
becomes 

Ho=iZ[Q(ki)Q(-ki)+c2(ki)e(ki)e(-ki)], (1.6) 
kj 

where o>(k/) is the frequency of the (kj) normal mode. 
Ignoring the kinetic energy terms in the Hamil­

tonian, since they cancel between the numerator and 
denominator in Eq. (1.3), we can write the required 
thermal average as 

< e x p { « - [ u ( 0 - u ( / ' ) ] » o = -

« p [ - i / 3 E o?(kj)Q(kj)Q(-kj)+i E C(k/ )e(k j ) ]JO 
kj kj 

/ 

(1.7) 

exp[-i0 E o>>frj)Q(kj)Q(-kj)yn 
kj 

where the subscript 0 indicates that the thermal average 
is being evaluated in the harmonic approximation. We 
now manipulate the expression in the exponent of the 
integrand in the numerator. We express it as 

£ = - i / 3 Z « 2 ( k i ) < 2 ( k / ) C ( - k j ) 
k; 

£=-f/3X"2(ki)(<2(kj)<2(-k;) 
k> 

/ M k / ) [c(kj)e(k/)+c(-kj)e(-ki)] 

+¥ E [C(ki)Q(kj)+C(-kj)Q(-
k) 

• k / ) l (1.8) = - ! / 3 E " 2 ( k i ) Q ( k i ) -
# 

-C(- -k/)] 
where we have replaced k by — k as the summation 
variable in the last term of this expression. We now 
factor the sum over k and j as follows: 

6 1 . Waller, Ann. Physik 83, 153 (1927). 
6 H. Hahn and W. Ludwig, Z. Physik 161, 404 (1961). 

X Q(-kj)-
i8^(ky) 

/M*i) 

C(k/)] 

C ( k j ) C ( - k j ) ] 

(1.9) 

1 

/ ^ ( k j ) 
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We next introduce new variables {P(kj)} by 

P(k/) = e(ly) — - C ( - k j ) . (1.10) 

(This transformation is due to Waller.5) In terms of 
these variables we can write the exponent as 

1 C ( k j ) C ( - k j ) 

20 k/ co2(k/) 

-i/JE^(ki)P(ky)i'(-ki), (u i ) 
kj 

so that the thermal average becomes 

<exp{«-[n(0-n( / ' ) ]}>o 

=exp — p r s 
L V <o2(kj) J 

/ 

(1.12) 

exp [ - i / 8 £ co2(kj)P(kj)P(-k./)]<ffi(P) 
kj 

/ 
exp[-§0 E ^(ki)e(ki)^(-ki)]JO 

In this expression d£l(P) is the volume element in the 
"phase space" of the variables {P(kj)}. 

Because our change of variables is a linear transla­
tion of the old normal coordinates, the Jacobian of the 
transformation is unity. Furthermore, the fact that our 
"integrations'' in the numerator are carried out along 
paths displaced from the old ones by —i/@u>2(kj) does 
not alter the value of the integral, according to Cauchy's 
theorem. Thus, the integrals in numerator and de­
nominator cancel and we are left with 

<exp{iK-[u(/)-u(n]}>o 

kT [ > e ( k j ) ] 2 

= exp 
NM v 2(k?) (1.13) 

i kT [K-e(kj)] 2 

X exp £ cos{ 2xk- [x(/) - x(/')]} 
\NMv a>2(kj) 

where we have used the explicit expression for C(k/'). 
The first factor is the Debye-Waller factor with which 
we are concerned in what follows. I t is easily shown from 
Eq. (1.4) that 

kT [K-e(kj) ] 2 

( [ K , u ( / ) ] 2 ) E , ( U 4 ) 
NM k; OJ2(k/) 

so that the Debye-Waller factor can be expressed 
alternatively as 

exp{-([K-u(0]2>o} = exp ( -2M 0 ) (1.15) 

for a harmonic lattice. 
In the special case of a cubic Bravais lattice, with 

which we are primarily concerned in what follows, the 
expression for 2MQ simplifies greatly. Expanding the 
square, [K-e(k/) ] 2 , in the numerator, we find that all 
cross terms between the components of e(k/) sum to 
zero since the product ex(kj)ey(kj) transforms as kxky 

while co2(It/) has cubic symmetry. Furthermore, due to 
cubic symmetry, 

ex
2(kj) ey

2(kj) 
E^=1E 

k/ (d2(k/) ky w2(k/) w oo2(k/) ky o?(kj) 
(1.16) 

where we have used the normalization of the eigen­
vectors. We thus obtain for this case that 

kT 
2M0= -*2£ 

1 

3NM w co2(kj) 
(1.17) 

We now turn to the calculation of the cubic and 
quartic anharmonic contributions to the exponent 2M. 

II. THE ANHARMONIC CONTRIBUTIONS TO THE 
DEBYE-WALLER FACTOR 

The anharmonic terms in the lattice Hamiltonian 
that we retain are the cubic and quartic terms which, 
expressed in terms of the {Q(kj)}, become 

HA=-~- Z £ A(k1+k1+k1)*(k1y1;k^,;k,y,)Q(k,ioe(k^)e(kf;'») 
6\/N kik2k3 hhh 

+ £ £ A ( k 1 + k 2 + k 3 + k 4 ) $ ( k 1 i 1 ; k 2 j 2 ; k , ; , ; k<ji)Q(k1jl)Q(kiji)Q(ksji)Q(kiji)+ •••, (2.1) 
24iV kik2k3k4 hhhh 

where the <i> coefficients are essentially the Fourier transforms of the cubic and quartic atomic force constants, and 
are given explicitly by Born and Huang.7 The function A(k) equals unity if k is zero or a translation vector of the 
reciprocal lattice and vanishes otherwise. We write Eq. (2.1) symbolically as 

where X is an order parameter which can be equated to unity at the end of the calculation. 

(2.2) 

7 M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954), Sec. 39. 
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The formal expression for the thermal average of exp{iV[u(/)— u (/')]} becomes 

I exp{-0#o-/3#A+*K-[u(/)-u(r)]}</a 

< e x p O - [ u ( 0 - u ( / ' ) ] } > = — . (2.3) 

If we now make the change of variables given by Eq. (1.10), where we now put 

C(-kj) 1 Oe(-kj)] 
A{kj)=— - = - ( ^ • ^ • ( « - e ^ ^ - « ' ) ) , (2.4) 

po?(kj) {NM)M /3u>(k/) 

in light of the calculations of the preceding section we obtain 

(exp{iK-[u(/)-u(/')]})=(exp{^-[u(0 

- u(/')]»o f expi-fiHn-pHA-P^HAyaiP)/ J exp(-pH0-fiHA)da. (2.5) 

In this expression, as before, the subscript 0 denotes the thermal average in the harmonic approximation. The 
perturbation Hamiltonian AHA' is given explicitly by 

1 
AH/= Z E A{k1+k2+k3)Hkijukij2;k3j3)l3iP(klj1)P(k2j2)A(kij3) 

6\/N kik2k3 jum 

1 
-3P(k1j\)A(^ji)A(k3ji)-iA(k1j1)A(k2jM(k3j3)l+ £ Z A(kH-k,+k,+kO 

242V kik2kak4 hhhh 

X$(kii i; k2y2; kajs; k^OC^PCkijOPCk^^ 

-UPik^A (k2j2)A (k,jz)A (ktjJ+A (ktjOA (k2j2)A (kzj,)A ( k ^ ) ] , (2.6) 
where we have used the fact that the # functions are 
completely symmetric in the interchange of any pair of 
(k/J's. In this expression, the terms which contain the 
{P(kj)} we denote by AH A, while the two terms inde­
pendent of the {P(kj)} we denote by the constant A. 
Thus we have that 

AHA'=AHA+A, (2.7) 

and Eq. (2.5) becomes 

<exp{iK.[u(0-u(O]}) 

= <exp{fK.[u(/)-oaO]}>o 

/ exp(-pH0-pHA-pAHA)da(P) 

Xexp(-pA) . 

/ exp(-pHo-pHA)da 

(2.8) 

Although the integrands appearing in the numerator 
and denominator of this expression are functions of 
different variables and the integrations are carried out 
over different paths, in what follows we can ignore 
these differences and consider the P variables as just 

the same as the Q variables. This follows from the 
relations 

Zo"1 I exp(-pHo)P(kj)dQ(P) = 0, 

Zo-'j exp(-/8H0)P(k/)P(k7)iffl(P) 

kT 
= A(k+k')5yy<——, etc., (2.9) 

<o2(kj) 

where Zo is the partition function of the crystal in the 
harmonic approximation. These relations are readily 
established bv transforming the variables back to the 
{Q(kj)}. 

The integral in the denominator of Eq. (2.8) is just 
the partition function for an anharmonic crystal whose 
Hamiltonian is H0+HA. This, by definition, can be 
written as 

/ exp(-fiHo-mA)dQ=e~^F
J (2.10) 

where F is the crystal's Helmholtz free energy. The 



A N H A R M O N I C C O N T R I B U T I O N S T O D E B Y E - W A L L E R F A C T O R 2533 

integral in the numerator can be regarded formally as 
the partition function of an anharmonic crystal whose 
Hamiltonian is HQ+HA+AHA. By definition, this can 
be written as 

/ 
exp(-/3HQ-mA-PAHA)dtt(P) = e-KF+*F\ (2.11) 

where F + AF is the Helmholtz free energy of the crystal. 
AF is the contribution to the Helmholtz free energy 
from those terms which involve AH A at least once. 
Combining Eqs. (2.8), (2.10), and (2.11) we obtain 
the formal result that 

<exp{iK.[u(/)-u(0]}) 
= (exp{iK-[u(0-u(/0]})o^-^^AF. (2.12) 

Sophisticated techniques for calculating the Helm­
holtz free energy of an anharmonic crystal have re­
cently been developed by Van Hove.8 However, since 
we have retained only terms up to 0(\2) in our an­
harmonic Hamiltonian, we are justified in keeping only 
terms up to 0(X2) in AF, and to this approximation a 
simpler treatment suffices. We begin by writing 
F+AF as 

F+AF= — In fe-^HQe-^H^AHA)dn(P). (2.13) 
0 J 

AF is given by all terms which are at least linear in e, 
and e can be set equal to unity after this identification 
is made. We rewrite Eq. (2.13) as 

1 1 r<r*H* 
F+AF= — lnZ0— In / e-^

H^AH^dQ(F) 
B 8 J Z0 

(2.14) 

= F0—ln<er*<**+«A*4))0, 

0 

AF=(AF4)o-^((AF3)2)o 

1 

where Zo is the partition function in the harmonic 
approximation and F0 is the corresponding free energy. 
The logarithm of the thermal average can be expanded 
in terms of semi-invariants or cumulants9 with the 
result that 

ln(exp(-0\F3-0X2F4- e/3XAF3- e /^AF^o 
= -0<XF3+X2F4+eAAF3+€X2AF4>o 

+^2C<(XF3+6XAF3)
2)o-<XF3+6XAF3)o

2] 
+0(X3), (2.15) 

where we have used an obvious extension of the nota­
tion of Eq. (2.2). 

Since F0 is independent of e, multiplying the expan­
sion in Eq. (2.15) by —1/0 and picking out the terms 
depending on e and of no higher order than X2, we obtain 

AF=(AF3+AF4)o-|0[2<F3AF3)o-2(F3)o(AF3)o 
+ ((AF3)2)o-(AF3)o2]. (2.16) 

The nonvanishing thermal averages are straightforward 
to evaluate with the aid of Eq. (2.9). However, there 
are two considerations which further reduce the number 
of terms which we have to consider explicitly. 

The first of these is the equation 

*(0i;ki';-k/) = 0. (2.17) 

This result holds for all Bravais lattices. It also holds 
for lattices with a basis provided that the position of 
each atom is at a center of inversion symmetry. It is 
quoted without proof by Peierls,10 and an explicit proof 
has been given by Sullivan, Maradudin, and Wallis.11 

It has the consequence that 

(F3AF3)o=(AF3)o=0. (2.18) 

Furthermore, it is also true that 

(F3)0=0. (2.19) 

WTe are thus left with 

(2.20) 

£ L A(ki+k2+k3+k4)#(ki>/i; k2j2; k*j*; k4jA)A (kzjz)A (k4i4)-
kT 

4iV kik2kak4 hhhh WO 
A(k!+k2)ay 

E E E E A(ki+k,+k,)A(k4+ki+k,)*(k,ii;k^,;kf;l) 
72JV kik2ka hhit kiksks jtfcn 

X$(k4. /4 ; k 6 y 6 ; Uje)\ -9A(lt3j3)A(ktjt) 
2(kT)z 

A(ki+k4)A(k2+k5)5,vA. 
w»(k,jiV(W0 

+9 A (k2j2)A (ktj»)A (kbjb)A (ke/a) 
hT 

«*(k i / i ) 
•A(ki+k4)«y : (2.21) 

8 L. Van Hove, "Selected Topics in the Quantum Statistics of Interacting Particles," Lecture Notes, University of Washington, 
Seattle, Washington, 1958; Tech. Rept. No. 11, Solid State and Molecular Theory Group, MIT, Vol. I, March, 1959. 

9 M . G. Kendall and A. Stuart, The Advanced Theory oj Statistics (Charles Griffin and Company, Ltd., London, 1958), Chap. 3 : 
See also R. Brout, Phys. Rev. 115, 824 (1959). 

10 R. E. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955), p. 37 second footnote. 
11 J. Sullivan, A. A. Maradudin, and R. F. Wallis (to be published). 
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The second simplification arises from the fact that we are calculating the Debye-Waller factor, which arises from 
the zero-phonon part of AF. These are the terms which are independent of both I and /'. These indices appear only 
in the {A (kj)}. There are two types of products of the {A (kj)} which are independent of both I and V. The first 
type consists of products in which the k vectors are paired two by two. It follows from Eq. (2.4) that a product 
such as A (kj)A (—kj') is independent of I and V. Clearly such pairings can occur only in terms containing an even 
number of A (kj) factors. 

The second kind of product of the A (kj) which gives contributions independent of both I and V is that in which 
the A(kx+k2H f-k,) function multiplying the product causes the exponential 

exp[2Ti(k1+k2+---+k.)-x(0] 

arising in the product of the A (kj) to equal unity. 
For example, we consider the two terms making up the constant A in Eq. (2.8): 

E E A(k1+k,+k a)#(kiii ; k2j2; kzjz)A(k1j1)A(kijt)A(kzj9) 
6\/N kik2k3 hhh 

+— Z E Afo+kj+kt+luWk^jk^ktf-.jk^^ (2.22) 
24A^ kik2k3k4 hhhk 

The product of three A (kj) in the first term contributes two terms proportional, respectively, to 

+exp[~2xi(k1+k2+k3) • x(Q] and -exp[-2i r i (k i+k 2 +k 8 ) • x(/')]. 

Because of the A-function restriction on the sum of the wave vectors, these two terms equal + 1 and — 1, respect­
ively, and hence cancel. The remaining six terms in this product depend explicitly on / and /'. Thus, this term does 
not contribute to the Debye-Waller factor. 

The second term in Eq. (2.22), however, does yield a nonvanishing contribution to the Debye-Waller factor 
which is given by 

1 
E E A(ki+k2+k3+k4)#(kiyi;k2>;2;k3i3;k4i4) 

12/3WW2 kik2k3k4 hhhk 
[K- e(kiji)][K- e(k2</2)]|V e(k3j3)][> e(k4>/4)] / 

X . (2.23) 
OJ2 (kiy i)a>2 (k2j2)co2 (k3j 3 V (k4i0 

In the same way, the only contributions to the Debye-Waller factor arising from the terms in Eq. (2.21) are 

1 $(kiir, - k i j i ; k2;2; -k2</8) [*• e(k2i2)][> e(k2;3)] 

2{32N2M kik2 hhh co2(kiji) co2 (k2y2V (k2j8) 

1 A(ki+k2+k3)$(ki t/i; k2 j2 ; k ^ s ^ - k i ^ ; -k2j2; -kzjA) [K-e(k3j3)][K-e(k3/4)] 

2$2N2M k!k2k3 hhhh o)2(kxjOco2(k2j2) co2(kzj3)co2(UjA) 

1 #(k1 i1 ;k2 i2 ;k3i .)^(-k1 j1 ;k6 i6;k6 i . ) 
lL H iL 1L A(ki+k2+k3)A(-k1+k5+k6)-4/3 W W 2 kik2k3 hhh k5k6 hh 0)2(k\ji) 

[K- e(k27'2)][K- e(k3j3) ] [ K - e(k5i5)][K- e(k6;6)] 
x . (2.24) 

co2 (k2y2 v (k3y3)cu2 (k5i& V (k6y6) 
Combining this result with the contribution given by Eq. (2.23) and the harmonic result, Eq. (1.14), we can 

order the terms in 2M in increasing powers of the temperature: 

2 M = 2 M o + 2 M i + 2 M 2 + 2 M 3 + 2 M 4 , (2.25) 

kT | > e ( k / ) ] 2 

2Jlf 0 = E , (2.26) 
NM ki w

2(k/) 
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(kT)2 < K k i i r , - W r , k2./2; - k 2 i s ) [K-e(k2 i2)][K-e(k2J3)] 

2N2M kik2 hhh w2(kiyi) co2(k2/2)co2(k2y3) 

{kT)2 

2M2= L E A(kH-k2+k3) 
2N2M kik2k3 3132J3H 

^ ( k i j i ; k 2 j 2 ; k 3 i 3 ) $ ( - k i 7 i ; - k 2 j 2 ; - k 3 i 4 ) [K-e(k 3 j 3 ) ] [> e(k3 j4)] ^ox 
X , (2.28) 

co2 ( k i / i V (k2y2) co2 (k3y3)co2 (kaiO 
(&r)3 

2M3= E E ACki+kj+ka+k^Cki j i jks is jW.jk^O 
1 2 i V W 2 kik2k3k4 JUWM4 

[ K - e ( k i j 1 ) ] [ K - e ( k 2 j 2 ) ] [ K - e ( k 3 7 3 ) ] [ K - e ( k 4 i 4 ) ] 
X , (2.29) 

co2 (ki j I)OJ2 (k2y2)co2 (k3y 3)co2 (k4j4) 

(kry ^ (W^k^jka is ) 
2M4= E £ E EA(k1+k2+k3)A(-k1+k5+k6) 

4 i Y 3 M 2 kik2k3 hj2h k5k6 isie C0 2 (k i j i ) 

[K-e(k2j2)][K-e(k3i3)][K-e(k5i5)][K-e(k6i6)] 
X ^ C - k u r , k5y5; k6y6) . (2.30) 

aJ
2(k2i2)W

2(k3i3)a>2(k5i5)a)2(k6i6) 

These five terms exhaust the contributions to 2M of a face-centered cubic crystal which has been em-
which are 0(X2) and lower. ployed in an earlier paper in this series.12 This model is 

I t is not difficult to show that the contributions to discussed extensively in reference 12 so that we will not 
2M which are given by 2M'Q-\-2M\-\-2M\ are just discuss its properties here, but will merely take over 
given by those results of this reference which are relevant to the 

2 M 0 + 2 M i + 2 M 2 = <(K- u)2). (2.31) present calculation. 
_ , . ,. , ,, .,, T-, / 0 OCN ,, . We begin with Eq. (2.26). As we say in the Intro-
This result, together with Eq. (2.25), means that un- , ^ *•.. . j • ^ c u-
,.t ^ ' u ? , . V , ; , ^ , xir n auction, this expression reduces m the case of cubic 
like the result for a harmonic crystal the Debye-Waller t i t 
factor for an anharmonic crystal is no longer just kT 1 
e x p [ — ( ( K - U ) 2 ) ] , where the average is evaluated in the 2MQ=K2 E • (3-1) 
canonical ensemble of the anharmonic crystal. The 3iVM k? co2(k/) 
exponent contains additional terms which are given by 
2MZ+2M4. These terms we call "anomalous." They can T h e s u m i n E c l- (3-1) h a s b e e n evaluated elsewhere for 
be shown to be given by " the present model13 with the result that 

2 i f 3 + 2 M 4 = - ^ [ < ( K - u ) 2 ) - 3 < ( K - u ) 2 ) 2 ] , (2.32) 1 10.0584^ 1.2S73NM 
£ = = (3.2) 

where we have retained only terms up to 0(X2) on the k; co2(k/) COL2 <t>"(r<y) 
right side of this equation. 

We now express each of these contributions in terms where COL is the maximum frequency of the crystal. 
of a simple model of a three-dimensional crystal. Using this value we obtain for the harmonic contribu­

tion to the Debye-Waller factor 
III. EVALUATION OF THE DEBYE-WALLER FACTOR 

•yrp 

In order to carry out a quantitative calculation of the ^M" = K2 (3 3528") (3 3) 
cubic and quartic anharmonic contributions for a three- ATCOL2 

dimensional crystal, we need a model of the crystal. 
We adopt here the nearest-neighbor central force model Turning now to Eq. (2.27) and using the fact that12 

<t>iv(ro) 
$(kiii ; k2y2; k3y3; k4y4) = E [>(/)• e(ki./i)][x(0-e(k2y2)] 

2M2r0*i,n.n. 

X[x( / ) - e (k 3 y 3 ) ] [x ( / ) - e (k 4 ^ (3.4) 

where </>(r) is the energy of interaction between a pair of atoms separated by a distance r, rQ is the nearest-neighbor 

12 A. A. Maradudin , P . A. Flinn, and R. A. Coldwell-Horsfall, Ann. Phvs . (N. Y.) 15, 360 (1961). 
13 P . A. Flinn and A, A. Maradudin , Ann. Phys . (N. Y.) 18, 81 (1962). 

file:///-/-2M
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separation, and where the vector x(/) runs over the twelve nearest neighbors to a given lattice point, we obtain 

4(*D2 *»*(r„) [x(9 • e(k, JO]2 sinVkx- x(/) 
2Mi= £ 2-

2 V W r0
4 u .« . kiA w*(kiyi) 

Cx(0-e(k2i2)][x(0-e(k2i3)][K-e(k2;2)][K-e(k2;,)] 
X E sin2Cxk2-x(/)3 . (3.5) 

The sum over ki and j \ is readily shown to be independent of / and has the value12 

i)5 
C«.(ki)+«,(k/)J . , r i ^ , ^ _ <*o Mf 

sinsLi*flo(«»+*y)J = , 
16 0"(ro) 

(3.6) 
^(k/) 

where ao=V2ro is the lattice parameter. 
With the aid of this result the expression for 2Mi becomes 

2Ml= — -— - — 1 E E - - ^ = Lji^ [ x(0 . e(k2y2)][x(0-e(k2 i3)]sinVk2 .x( /) . (3.7) 
2 NM2 r0

2 <£"(r0) *.*•». k2;2/3 w2(k2y2V(k2j3) 

At this point it is convenient to carry out the sum over / and the use cubic symmetry in reducing the results. The 
double sum in Eq. (3.7) thus becomes explicitly 

ii) 
2 CK>e(k2j2)]CK»e(k2i3)] 

*2hj3 o)2(k2y2)a>2(k2>7'3) 

:{&*(M2) + ^ (W2)X^(Ws) + «y(W3)]sin2C^o(*2*+*2|f)] 

+£ex(k2j2) - ey (k2i2)]Cex(k2>;3)—ey ( M 3)] sin2[^ao (***- k2y)~]+[_ey (k2y2)+ez (k2./2)][>v (k2y 3) 

+ez(k2j\)l sin2[|Tao(^2y+A22)]+[^(k2y2) — ̂ (k2y2)][ey(k2;3) — ̂ (k2y3)] sin2Q7ra0(^2y—k2z)'] 

— ex(k2jz)~] sm2£%Ta0(k2z—k2x)~]}. (3.8) 

We now use the transformation properties of the 
eigenvectors and cubic symmetry to reduce this expres­
sion. The transformation property of the eigenvectors 
that we use the most can be expressed as 

e(klj) = Ae(kj), (3.9) 

where A represents a real orthogonal transformation 
which takes the reciprocal lattice into itself. In writing 
Eq. (3.9) in the form given we are expressing k as a 
row vector and e(k/) as a column vector. The proof of 
Eq. (3.9) follows from the transformation properties of 
the second-order (harmonic) atomic force constants14 

and of the dynamical matrix, and are not given here. 
Since we are primarily interested in evaluating 2M 

for a cubic Bravais crystal in this paper, the particular 
cases of Eq. (3.9) which we will use are of the type 

ex(ky,k2ikxj) = ey(kx,ky,kzj), etc., (3.10a) 

ex(—kXfky,kzj)= -ex(kx,kyykzj), (3.10b) 

ey(-kx,ky,kzj) = ey(kje,ky,k2j). (3.10c) 

Along special directions in k space such as the [100] 
and [111] directions the eigenvectors are indeterminate 
due to the degeneracy of the frequencies belonging to 
the two transverse modes. In such cases the relations 
among the components of the eigenvectors implied by 
Eq. (3.10) may or may not be satisfied. This, however, 
does not matter since any two normalized vectors 
which are perpendicular to each other and to the eigen­
vector of the longitudinal mode are acceptable eigen­
vectors for the transverse modes, even if their com­
ponents do not satisfy Eq. (3.10). It should also be 
remarked that there is a fundamental indeterminacy 
in the sign of the right-hand side of Eq. (3.9): it could 
equally well be negative. However, since no eigenvector 
ever occurs singly but is always paired with another 
belonging to the same k value, this indeterminacy of 
sign never affects any of our answers. 

If we now apply Eqs. (3.9) and (3.10) to the expres­
sion (3.8), we can simplify it to 

(i) 
2*fe(k2y2)-e(k2;3)] 

*2hh 0)2Q&2j2)a>2(1si2Jz) 
[e*(k2y2)+£i,(k2y2)X^ 

_ £ex(k2j2)+ey(k2j2)2
2 

= K W E ; sm^ira0(k2x+k2y)J (3.11) 
k2>2 C04(k2%/2) 

14 G. Leibfried, in Handbuch der Physik, edited by S. Flugge (Springer-Verlag, Berlin, 1955), Vol. 7, part 1, p. 104. 
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In Appendix A it is shown that this sum is equal to 

2*W 1 M 1 / x £ =K2ao2 E . (3.12) 

3 WL2 v co2(k/) 12<£"(r0) ky co2(k/) 

Combining the results expressed by Eqs. (3.7), (3.11), (3.12), and (3.2) we have, finally, that 

(kT)2 <t>w(r0) 
2Mi= -6.7056/c2 . (3.13) 

AfW*"(ro) 

We turn now to the evaluation of 2M2 which is given by 

(kT)2 $(kiji; k2j2] kzjzW-kxju -k 2y 2 ; -kzj*) | > e(k3j3)][> e(k3;4)] 
2ilf2= £ £ A(ki+k2+k3) — . 

2N2M M2k* hhhu cD2(kiji)w2(k2j2) u2(kzjz)o)2(k3j4) 
(3.14) 

In this section we merely simplify this expression somewhat and defer a discussion of its numerical evaluation to 
Sec. VI. 

We replace A(ki+k2+k3) by its representation as a Fourier series, 
A(krfk 2+k 3)= (1/N) Zt exp[27ri(k1+k2+k3) • x(/)], (3.15) 

and introduce the explicit expression for $ ( W i ; k2y2; k3j3) appropriate to our model12: 

4>'"(n) 
$(k1yi;k2i2;k3y3)=(2i)3 E [n-e(kiyi)][n-e(k2y2)][n-e(k3i3)] 

2(2ilf)3/2n,n.n. 

Xexp[—|7ria0(ki+k2+k3)-n] sin(|ira0kr n) sin(§*ra0krn) sin(^ira0k3- n), (3.16) 

where we have introduced the dimensionless vector with integer components, 

x(/)=4a0n. (3.17) 

The sum over n extends over the twelve nearest neighbors to a given lattice point. 
If we substitute Eqs. (3.15) and (3.16) into Eq. (3.14) it becomes 

O'"('o)]2 

2M2= (kTY E E E E erp[2W(ki+M-k,)- x(0]exp[-fr*ao(ki+k,+k,)• ( n ^ n 2 ) ] 
N3M* l nm2 n.n. kik2ks hhhh 

[nre(ki ; i ) ] [n 2 ' e(k1J1)][iii- e(k2j2)][n2- e(k2j2)][nr e(k3y3)][n2- e(k3j4)] 
X sin(j7ra0ki- nx) 

o3
2(k1iiV(k2i2V(k3i3V(k3i4) 

X sin(i*-a0ki • n2) sin (§7ra0k2 • nx) sin (|xa0k2 • n2) sin(§7raok3 • ni) sin (%waokz • II2)[K • e(kzj3)][K • e (k3j4)]. (3.18) 

In the product [K*e(k3y3)][ic-e(k3j4)] there occur factor Kx
2ex(kzy,kzz,kzxjz)ex(kzy,kzz,kzxJ4) is equal to 

two basically different kinds of terms, namely, Kz
2ex(kzjz) 2 fu L z. • \ /L L L -\ 

Xe,(k3i4) and w , ( k , . / 3 K ( k 3 j 4 ) . We now show that Kx e*(k**>k*v>k'*J')e*(ks*MM*J*). 
the second kind of term gives a vanishing contribution We now relabel (&i*,&i,,,iki*) and (&2*,&2„,&2;B) in Eq. 
to 2M2, while the first kind of term has the same value (3.18) as (kiy,ku,kix) and (kiyMzM*\ respectively. The 
if ex(k3y3)ex(k3y4) is replaced by either e1/(k3</3)ev(k3j4) sum is invariant against this change. If we now replace 
or ez(kzjz)ez(kzJ4). (nix,niy,nu) by (niy,nu,nix), respectively, and treat 

We begin by replacing the product [Ve(k3>/3)] similarly the components of n2 and x(Z), the value of 
X[K-e(k3j4)] in Eq. (3.18) by one of its terms, viz., the sum is not changed, but the coefficient multiplying 
Kx

2ex(kzjz)ex(kzji). Since, in the sum over k3, kZx, kZy, Kx
2ey(kzjz)ey(kzj\) is the same as that which multiplied 

and kzz are dummy variables, each of which assumes the Kx
2ex(k3^3)ex(k3j4) when we started. 

same values as the others, we can relabel them kzy, kzz, It only remains to show that the terms proportional 
and kZx, respectively, without altering the value of the to KXKVI KVKZJ and KZKX vanish. We merely sketch the proof. 
sum. However, in view of Eq. (3.10) we see that the We begin by replacing the factor [K-e(k3y3)][K-e(k3y4)] 
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in Eq. (3.18) by KxKyex(kzjz)ey(kzji), and then replace 
kzx by — kzx as a summation variable. The value of the 
sum cannot be altered by this replacement. However, 
in view of Eq. (3.10) the effect of this step is to change 
the sign of the right-hand side of Eq. (3.18), and to 
replace kzx by — kzx in all the factors of the summand 
except in the factor KxKyex(kzjz)ey(kzj A) . But if we now 
replace the summation variables k\x and k2x by — k\x 

In Eq. (3.20) A(k/) is a dimensionless frequency which 
is defined by 

2<j>"(n) 
co*(k;) = \2(kj\ (3.22) 

M 

and x is the translation vector of the reciprocal lattice 
which satisfies k i + k 2 + k 3 = ' c . 

We are finally left with the two sums given by Eqs. 
(2.29) and (2.30) to evaluate. In this section we reduce 
them to a more manageable form for numerical calcula­
tions, and discuss their evaluation in Sec. V. 

When we expand the product [K- e (k i j i ) ] [V e(k 2 j 2 ) ] 
X[k- e(kzjz)2LK' e(^j^)l in terms of the components 
of K and the e(k/) 's , of the 81 terms which result only 
very few give nonvanishing contributions to 2M3 and 
2M4. These terms are those which are even in KX, KV, KZ. 
That the remaining terms give rise to vanishing con­
tributions follows from the same kinds of manipulations 
of the various dummy summation variables as were used 
to establish the analogous result for 2M2. 

The only terms which survive are those which contain 

Kx*ex(kiji)ex(k2j2)ex(kzjz)ex(k4J4) 
^rKy%i^ij^ey^2j2)ey{kzjz)eyi^4j4) 

+Kz
Aez(kij^ez(k2j2)ez(kzjz)ez(k4j^, (3.23) 

A N D P . A. F L I N N 

and — k2x, respectively, and replace mx, n2x, xx(l) by 
their negatives in the sums over these variables, neither 
of which steps can alter the value of the sums, we end 
up with an expression which is the negative of the sum 
we started with. This implies the vanishing of the 
sum. 

Thus, the terms in Eq. (3.18) proportional to 
KX

2, Ky
2, K2 can be combined to yield 

I and those which are of the type 

K2K2ex(klji)ex(k2j2)ey(kzjz)ey(k4jA), 

' KyWey(k1ji)ey(k2j2)ez(kzjz)ez(k4j4), (3.24) 

Kz
2Kx

2e2(k1ji)ez(k2j2)ex(kzjz)ex(kij4). 

In the case of 2M3, each of the expressions in Eq. (3.24) 
is multiplied by a factor of six corresponding to the 

e six equivalent permutations of the (kiji) among the 
x's and y's and z's. Their equivalence is a consequence 
of the invariance of 

s A ( k i + k 2 + k 3 + k 4 ) ^ ( k i 7 i ; k2j2; k 3 j 3 ; k4j4) 

? against the interchange of any pair of (kiji). 
In the case of 2MA the six terms of each of the three 

:* categories displayed in Eq. (3.24) are divided into two 
groups, containing two and four members, respectively. 

, This is due to the fact that while 

A(k1+k2+k3)A(-k1+k5+k6) 
X$(kiji; k2j2; k s i s ) ^ — W i ; k6j5; k6j6) 

is invariant against an interchange of ^272) and (k3j3), 
it is not invariant against an interchange of (k2j2) and 

) (kiis). 

tyo-o)]2 

2M2=\K2(kTY L E E E exp[2x i (k i+k 2 +k 8 ) -x ( / ) ] 
NZM* l nm2 n.n. kik2ka hhh 

[ n r e(k1 j i ) ][n2- e ( k 1 j 1 ) ] [ n r e(k2 j2)][n2- e(k 2 i 2 ) ] [ni- e(k373)I>2- e(k3y3)] 
X' —— 

X exp[—§7riao(ki+k2+k3)- (ni—n2)] sinQn-aoki-iii) sin( |xa0ki-n2) sin(§7ra0k2-iii) 

Xsm(^7ra0k2- n2) sin(|7nz0k3-ni) sinQ7ra0k3-n2), (3.19) 

where we have used the orthonormality of eigenvectors belonging to different branches but to the same wave vector. 
This result can finally be expressed compactly as 

K2 (kTf Wf(ro)J A(k1+k2+k3)F2(k1y1; k2i2; k3j3) 
2M2= E E , (3.20) 

48 N2 \j>"(r0)y*iWshJ2h XHkijiWfahWfajs) 
where 

F(kiju k 2 i 2 ; k 3 j 3 )= E exp(|7ria0u-n)[n- e(kr / i ) ] [n- e(k2y2)][n- e(k 3 j 3)] 
n, n.n. 

Xsin(§7ra0krn) sin(|7ra0k2-n) sin(§xaok3-n). (3.21) 
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It is also straightforward to show for both 2MZ and We first consider 2M3. If we use the result that 
2Mi, by the appropriate relabeling of the components wu a a a \ 
of the vectors k* that the sums multiplying K\KV\ K.* J{l/

2
} £ ^^(k.+^+^+k,) • x(l)l (3.25) 

are equal, as are the sums multiplying KX%2, KV
2K2, **V. W y ^ ^L K 

After these preliminary comments we turn to an together with Eq. (3.4), and make use of the foregoing 
explicit discussion of 2Mz and 2M4. qualitative results, we have 

2MZ= {A(Kx*+Ky*+Kz*)+6B(KxW+*vW+KzV)}7 (3.26) 
96iV4 if4 

where 
[n- e(ky)](l-e~'riookn)ex(k>;) j 4 

l a, n.n. I kj U>2(kj) 
A = Z E | L e ^ ^ ) _ J , (3.27a) 

B = H E E e " * ' x ( I ) - - ^ — ^ E <?'*•*<»- - ^ i l ^ l 1 (3.27b) 
l n, n . n . I k / C 0 2 ( k / ) J [V a)2(k/) J 

Since, in general, 65^2-4, we see from this result that inclusion of the contribution from 2M% to the Debye-Waller 
factor leads to a result which is no longer isotropic with respect to K. 

We finally come to the term 2M4, which is given by Eq. (2.30). If we use the Fourier representation Eq. (3.15) 
for each of the A functions appearing in this expression and make use of the symmetry arguments described above, 
we find that we can write 2M4 as 

(kT)*£4>'"(ro)J 
- 2 M 4 = {C(/c,4+Ky

4+K/)+(2Z)+4£)(KxV+%V+K2
2Ka;

2)}, (3.28) 
128 N'M* 

where 
[ n r e(k1y1)][n2- e(k1j\)'] 

C = E E E e2irikl'[x(h)~xih)](l—e~7riaokl'ni)(l — e*iaokl'nt) 
hte nm2, n . n . k m C O ^ k i ^ ' i ) 

) ex(kj)}2{ e (kj)}2 

£ e2 i r i k-x a i )[ i i re(k7*)]( l-e-^k-n0^ E e2"k x a 2 )[n2-e(ky)](l-e- ' r i o o k-n 2)- , (3.29a) 
ki w2(k/)J Iky «2(k/)l 

[ n r e(kiji)J£n2' e(ki7i)] 
Z?=E E E e27rikl'^x(Zl)~x(Z2)Kl"~^~7r*aokl'ni)(l~~^iriookl'n2)~ 

lite mm, n.n. kiii Cx)2(kiji) 

*(kj)| ^ W , M 2 ( _ _ _ ey(kj)^2 

X E ^ ^ - ' ^ [ n r e(kj)](l-e- ' r i o o k-n i)—"^} {E e2™k-*«2>[n2- e(ky)]( l-e™°k-n 2)-^-^ \ , (3.29b) 
lw a>2(k/)J Iky «2(k/)J 

[ n r e(kiji)][n2- c(kiji)] 
£ = E E E e2Tikl-fx(Il)-x^2)i(l~e~'*'^kl'ni)(l--eir*aokl,n2)-: 

h*2 nm2, n . n . ku ' i O J 2 ( k i J i ) 

ex(k2J2) ey(kzjz) 
X I e27rik2-x(^)[n1-e(k2y2)](l-e-5r^k2 'n0 E e27rik3-x^ l )[n re(k3i3)](l-^?r iook3-ni) 

^2/2 C 0 2 ( k 2 y 2 ) k3J3 CO2 ^ 3 ^ 3 ) 

0*^57*5) ^ ( k e / e ) 
X E 62^k5*x(^[n2- e(k5y5)](l-e-iriO0k5-n2) r E ^ • • ^ [ i v e(k6i6)](l-e-7ri'aok6-n2) . (3.29c) 

k6J5 ^ ( k s / s ) k6i6 C O ^ k e ^ e ) 

We see that this contribution to the Debye-Waller factor. This is a comparatively easy correction to make 
factor is also not isotropic. if we are satisfied with an approximate result. 

The evaluation of these expressions is discussed in The expression for the Debye-Waller factor in the 
Sec. V. harmonic approximation, Eq. (3.3), can be written for 

our model as 
IV. THE EFFECT OF THERMAL EXPANSION 

w , .J J 1 1* * , 2Mo=0.419k2[&r/<£//(r0)], (4.1) We have not as yet considered the effect of the 
thermal expansion of the crystal on the Debye-Waller where we have used the fact that the maximum fre-
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quency of the lattice is 

(4.2) 

In both of these expressions r$ is the equilibrium value 
of the nearest neighbor separation at temperature T. 

In discussing the effects of thermal expansion, it is 
convenient to expand all quantities about their values 
in the lattice configuration which corresponds to the 
minimum of the potential energy. This is a unique 
configuration because it is independent of temperature. 
If we denote the nearest-neighbor separation corre­
sponding to the minimum of the potential energy by f 0, 
then we can write 

r o = ( l + e ) f o , (4.3) 

where e is the linear expansivity of the crystal. 
If we substitute Eq. (4.3) into Eq. (4.1) and expand 

2Mo in powers of e we obtain 

^ " ( f o ) 1 
, cf0 +0(e2) . (4.4) 2M0=0.4191K2-

kT r 

>"(fo)L 

It only remains to determine e as a function of tempera­
ture. We note that since <t>ff/(fQ) is 0(A) we require e 
only to O(X) in order to obtain 2MQ correct to 0(X2). 

The result of reference 12 for the vibrational con­
tribution to the Helmholtz free energy in the high-
temperature limit is 

F(T) = 3NkT ln0.6505— | 
ft /8<£"(r0)> 

kT\ M J 

1/2 

+0(X2). (4.5) 

The static lattice contribution to the free energy is 

l7 = 62V0(ro). (4.6) 

We expand U about fo up to quadratic terms in e, 
and expand F(T) up to linear terms: 

U=6NZ<t>(h)+h2?oW'(h)+0(e*)l 

F(T) = 3NkT ln0.6505—( ) 

(4.7a) 

3 iV£7> ' " ( f 0 ) 
+ ef0 +0(€2). (4.7b) 

2 * " ( f 0 ) 

The equilibrium value of e at temperature T is obtained 
by minimizing the sum U+F(T) with respect to e: 

6Nefo*4>"(fo)+f<r 
3NkT<t>'"(fo) 

2 *"(f0) 
= 0. 

Solving for e we obtain 

kT 0"'(fo) 

4fo[*,,(fo)]2 
(4.8) 

It is not difficult to show that the terms omitted in this 
result are 0(X3). 

We now use Eq. (4.8) in Eq. (4.4) and obtain finally 

kT O'"(fo)]2 

2M0=0.4191K2——7+0.1048K2 (ifer)2 

* " ( *> ) [>"( fo)]4 

+0(X2). (4.9) 

It is not necessary to apply the correction for thermal 
expansion to the remaining terms in 2M since they are 
already 0(X2). This fact has the further consequence 
that in evaluating the cubic and quartic anharmonic 
contributions to 2M we must use their values calculated 
in the configuration corresponding to the minimum of 
the potential energy, since the corrections to these 
values are of higher order in X than we are considering 
here. 

It is worth pointing out that if we replace F(T) by 
the zero-point energy15 

/84>''(r0)\
1/2 

JEo=1.0227iV*f J =Ne0, (4.10) 

in the preceding calculations, we find that the value of 
e at the absolute zero of temperature is given by 

€0 = 

1 €0 * '"(f0) 

12 f0 O"(fo)]2 
(4.11) 

where lo is the zero-point energy per atom evaluated at 
the minimum of the potential energy. That €o is not 
zero is a manifestation of the fact that the value of the 
nearest-neighbor separation even at the absolute zero 
of temperature is determined by minimizing the total 
free energy, including zero-point energy, and not just 
the potential energy. 

Finally, we remark that the approximation we have 
used in obtaining the results of this section is that we 
have taken the result for the free energy in the har­
monic approximation and have evaluated it for an 
expanded lattice. The correct procedure is to start with 
a uniformly expanded lattice and evaluate its free 
energy. This is generally a more difficult calculation to 
carry out than the calculations we have performed. 

However, the results of a rigorous calculation of the 
shift in phonon frequencies due to thermal expansion, 
which will be reported elsewhere, show that although 
the results of the present section were obtained in an 
approximate manner, they are nevertheless correct for 
the crystal model with which we work. 

V. EVALUATION OF 2M, AND 2MA 

The sums A, Bf C, D, and E which appear in the 
expressions for 2M3 and 2M4 are so complicated that it 
was felt that their exact evaluation, even with the aid 

15 C. Domb and C. Isenberg (private communication). 
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of a computer, is impractical at this time. We have The remaining sums are evaluated in the same way 
accordingly evaluated them by making use of an and we obtain the following results: 
approximation due to Ludwig.16 This approximation 
consists of replacing each factor of «2(k/) in the de­
nominators of these sums by its average value which is 
given by 

(cf(Jkj))=— I> 2 (k7) = J"2, (5-1) 
3iV kj 

5=8tf«/w
4 , 

C=64tf»//»i'» 

Z>=32Ar5/V2
5=£. 

(5.9) 

(5.10) 

(5.11) 

where pt2 is the second moment of the frequency spec­
trum of the crystal in the harmonic approximation. 
For the present model 

From Eqs. (3.23), (5.8), and (5.9) we obtain for 2M3 

the result 

3M3= [ W + ^ M - K , 4 ) 
6 M 4

 M24 

M2=4<£"( ro ) /M=|<^ 2 , (5.2) 
+3(KXW+«VW+KZW)1 (5.12) 

where WL is the maximum frequency of the crystal. 
When this is done the sums can be evaluated in closed 
form. 

(*D» *w(ro) 

To illustrate the procedure we present the evaluation ^ i l a r l y ' f r 0 m E q s > ( 3-2 5 ) ' ( 5-1 0 ) ' a n d ( 5 , 1 1 ) w e find 

of the sum A in detail and merely list the results for the 
remaining sums. 

After we use Ludwig's approximation, A becomes 

A=—T. E (E *"k-*w>«.(ly) 
^t2

4 I n.n.n. k/ 

•2Af4= 

3072 |>"(ro)]4 

, from Eqs. i 

(*r)IC*'"(ro)]! 

[ 3 K " - ( ^ + K „ 4 + K , 4 ) ] . 

2M6 
• C ( K , 4 + K / + « / ) 

M2" 

+3(KXW+«VW+K,!W)] (5.13) 

l 
X[n-e(kj)](l-e-' r i< ,»k")}4 (5.3) 

(5.4) 
4096 l<t>"(ro)'} 

- [ 3 K " - ( ^ + V + 0 ] . 

= — £ E {E e2 ' i k I« )M I( l -e-"°»k n)}4 

o4 I n .n .n . k Equations (5.12) and (5.13) clearly display the de­
parture from isotropy in the components of K of the 
Debye-Waller factor for cubic crystals. 

The results obtained by the use of Ludwig's approxi­
mation generally underestimate the correct results, but 

Equation (5.4) is obtained from Eq. (5.3) by use of the i n a11 .c a s e s s t u d k d S0 ?af12'17 w h e r ? t h e e x a c t . a n d 

iV4 

= - L Z {^[A(l) -A(l -n)]} 4 . 
M24 

(5.5) 

closure relations satisfied by the eigenvectors. In ob­
taining Eq. (5.5) we have used the result that 

£ k e2Tik.I(z) = 2 : k e****-i=j\TA(l), (5.6) 

where 1 is a dimensionless vector with integer com­
ponents which is defined by 

x(/) = |a0l. 

Expanding Eq. (5.5) we obtain 

N* 
A = —ZZ «*4[A4(l)-4A3(l)A(l-n) 

jU2
4 1 n.n.n. 

(5.7) 

approximate results can be compared the error is no 
more than 31%. 

VI. NUMERICAL RESULTS 

Since we chose to evaluate 2M% and 2M4 using 
Ludwig's approximation, the only heavy numerical 
calculation that had to be performed was that of 2M2. 

The evaluation of the triple sum over k space which 
appears in Eq. (3.20), 

s = y T ^(ki+fc2+k3)F2(k1j1; k2 j2 ; k3j3) 

" k!k2k3 nhn X2(kiii)X2(k2i2)X4(k3i3) 

was carried out numerically on an IBM 7090 computer. 
+6A2(1)A2(1—n)—4A(1)A3(1—n)+A4(l—n)] (5.8) This sum is related to one previously evaluated for the 

cubic anharmonic contribution to the high-temperature 
= (i\ryM2

4)(8-4-0+6-0-4-0+8) f r e e energy.12 Unfortunately, the technique used for 
_ 15 7\T4/u 4 that problem, introduction of a Fourier series repre-

2 ' sentation for the A function and factorization of the 
where the vanishing of the second, third, and fourth sums over the wave vector, which reduced the problem 
sums is due to the fact that n is restricted to be a to a single sum over k space, is not applicable here 
nearest-neighbor vector. because of the more complicated denominator. Certain 

17A. A. Maradudin and P. A. Flinn, Phys. Rev. 126, 2059 
16 W. Ludwig, J. Phys. Chem. Solids 4, 2831 (1958). (1962). 
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simplifications, however, can be made. First we note 
that for given values of ki and k2 the delta function 
condition defines a unique k3 in the Brillouin zone, 
unless k3 falls on a zone boundary. This may readily 
be seen. Consider the quantity — (ki+k2); if it lies 
within the zone it must equal k3; any translation by a 
reciprocal lattice vector carries the point outside the 
zone. Similarly, if — (k1+k2) lies outside the zone, a 
translation by some reciprocal lattice vector will carry 
the point to a uniquely defined k3 inside. The triple 
sum over ki, k2, and k3 then reduces to a double sum 
over ki and k2, with k3 determined by the condition: 

k8=-(ki+k2)+*, (6.2) 

where % is the appropriate reciprocal lattice vector 
(possibly zero) such that k3 lies inside the zone. The 
difficulty which arises when k3 lies on a zone boundary 
and hence is not uniquely determined, is discussed 
below. 

In addition, it is convenient to rewrite the sum in 
symmetrized form, so that we may make full use of the 
cubic symmetry in the problem. We now have to evalu­
ate the double sum: 

s=T. Z 
F^Ck^ukij^kzjs) 

klk2 hhh X2(kl7'l)X2(k2i2)X2(k3i3) 

X2(k1i1)X
2(k2i2)+X2(k2i2)X

2(k3i3)+X2(k3i3)X2(k1i1) 
X-

3X»(k,./i)Xs(WiMktf») 
(6.3) 

If we consider the function of k2 which we are left with 
after carrying out the sum over ki, it has cubic sym­
metry in k2; consequently only one sum need be evalu­
ated over the entire zone, and the other can be re­
stricted to the fundamental element—1/48 of the 
entire zone. 

For the actual numerical calculation it is necessary 
to choose some suitable grid of points in k space. For 
our previous calculations of this sort we used a set of 
points of the form 

kx=zLn/Na0, « = 1 , 3, 5, • • • ,#—! . (6.4) 

Such a set of points leads to certain simplifications by 
eliminating boundary points. This method could not be 
used here, however, since with ki and k2 of odd type, 
k3 would be of even type. For this calculation, therefore, 
both even and odd points were used, with the attendant 
complication of the proper weighting for points lying on 
the zone boundaries. Terms in the sum corresponding to 
boundary points of ki and k2 were given appropriately 
reduced weights. For values of k3 lying in the boundary 
only one of the equivalent points was generated and the 
associated term was given full weight, since the terms 
associated with the equivalent points would necessarily 
be equal, and the number of equivalent points is the 
same as the denominator of the weighting factor. 

The calculation was carried out in the machine in 
two stages. In the first step, for each of the grid points 
in the fundamental element of the zone the elements of 
the dynamical matrix were evaluated with the aid of the 
results of Appendix A of reference 12, and the matrix 
was diagonalized by the Jacobi procedure, yielding its 
eigenvalues and eigenvectors. These were stored for use 
in the calculation proper. Although calculated only for 
the elementary 1/48 of the zone, the eigenvalues and 
eigenvectors were available for the entire zone, since 
the lookup routine incorporated the necessary sym­
metry operations which transform the eigenvectors 
corresponding to equivalent points in the zone. The 
calculation then proceeded by a systematic double 
scan of the points of the mesh in k space, evaluation of 
k3 for each pair of points according to Eq. (6.2), 
calculation of the summand, and summation. 

In calculations of this complexity it is virtually 
essential to check the over-all correctness of the pro­
gram by computing, along with the quantity of interest, 
one or more check quantities, as similar in form as 
possible, but accurately known in advance. These 
quantities also provide some estimate of the error 
associated with mesh size. For this calculation two such 
quantities were available from previous work. First, if 
we set all the X's in Eq. (6.3) equal to unity, we have: 

Sa= £ L ^2(kiii;k2i2;k3y3). 
klk2 J1J23Z 

(6.5) 

This quantity was previously evaluated exactly in 
closed form. In addition, the sum obtained by setting 
the X's in the second factor of the summand in Eq. 
(6.3) equal to unity is 

Sb=Z E 
F 2 (k i j i ; k 2 j 2 ; k 3 j 3 ) 

kik2 hhh X2(k1j1)X
2(k2j2)\

2(kzjz) 
(6.6) 

and this is the sum required for the cubic anharmonic 
contribution to the high-temperature free energy. This 
we previously evaluated numerically by a different 
method.12 The results we obtained for the three sums, 
and the corresponding results from our previous work 
are 

S=A^(2.027), (6.7) 

Sa(exact) = A72(18), (6.8a) 

5a(calc.)-A72(17.99195), (6.8b) 

^(present method) = AT2(2.646), (6.9a) 

S&(method of reference 12) = A72(2.692). (6.9b) 
These results were obtained with a grid of 256 points 
in the Brillouin zone. 

The agreement between the two results shown in 
Eq. (6.8) indicates that the present summation tech­
niques are capable of achieving good accuracy. The 
good agreement between the two results shown in 
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Eq. (6.9) provides an independent check on the method 
of summation employed in reference 12 and at the same 
time lends support to the correctness of the result 
given by Eq. (6.7). 

Combining Eqs. (3.20) and (6.7) we obtain finally 

«2 t>'"('o)]2 

2M2=—(£2? (2.027). (6.10) 
48 [ » o ) ] 4 

We can now assemble the results of Sees. I l l , IV, V, 
and the present section, to write the following expres­
sion for 2M for the present model of a face-centered 
cubic crystal: 

kT |>"'(?o)]2 

2M= 0.419k2 -+0. 1048K2 (kT)* 

-^(kTy-

*"Co) 

<t>iv(fo) 
(0.1048)+K2(*r); 

l>"(f„)]4 

[*"'(?o)]2 

O"(fo)]3 O"(ro)]4 

X (0.04223)+O4- (K^+K^+K^ikTy 

1 <T( f o) l |>" ' ( f „ ) ]2 - i 
+"(X2)-X 

.3072 | > " ( f0 ) ]4 4096 | > " ( f0) ]6 J 
(6.11) 

In conformity with our discussion in Sec. IV, all of the 
derivatives of <t>(r) which appear in this expression are 
evaluated in the configuration which corresponds to 
the minimum of the potential energy. 

In order to obtain an estimate of the magnitude of 
the anharmonic contributions to 2M we decided to use 
our model to approximate lead. The choice of lead was 
motivated by the fact that due to its low Debye char­
acteristic temperature (105°K at 4.2°K18) even room 
temperature is a high temperature for lead, so that our 
theoretical results should apply in a temperature range 
where it is comparatively easy to carry out experi­
mental measurements of the Debye-Waller factor. The 
shortcomings of our present model as a representation 
for lead have been discussed in reference 12, and we 
will not discuss them again here. We feel, however, that 
the numerical results we obtain in this way can be re­
garded as being indicative of the state of affairs for lead, 
but should not be accepted unreservedly. 

The values of the various derivatives of the inter­
atomic potential which appear in these expressions were 
obtained in the following way. We have seen (Eq. 4.8) 
that in the high temperature limit the linear expansivity 
is given by 

kT 4>'"(f0) 
e= , (6.12) 

4fo[y ' ( fo) ] 2 

where f o is the value of the nearest-neighbor separation 
which corresponds to the minimum of the potential 
energy. The relation between the observed nearest-

18 D. L. Waldorf, Bull. Am. Phys. Soc. 5, 170 (1960). 

neighbor separation at temperature T, r0, and f0 is 
thus given by 

kT <t>"'(h) 
r0=f0 . (6.13) 

4 O"( fo) ]2 

From this result we see that if we take the nearest-
neighbor separation at high temperatures where its de­
pendence on temperature is linear, and extrapolate the 
linear behavior to the absolute zero of temperature, we 
obtain f0. 

Similarly, Ludwig16 and Leibfried and Ludwig19 have 
pointed out that if one takes the high temperature 
values of the elastic constants of a solid in the region 
where their dependence on temperature is linear and 
extrapolates the linear behavior back to the absolute 
zero of temperature, the values of the zero temperature 
elastic constants so obtained are those which would be 
obtained in the strict harmonic approximation, i.e., 
from the potential energy alone. They have performed 
this extrapolation for many solids. This is a convenient 
result to use in determining numerical values for the 
derivatives of the interatomic potential since the ex­
pressions for the elastic constants in the harmonic 
approximation are particularly simple for the present 
model: 

£ii=(V2/f0)*"(fo), Ci2=Cu=(l/y/2r0)<l>"(to). (6.14) 

However, these expressions imply certain relations 
among the harmonic approximation elastic constants 
which are not satisfied by the experimental values 
quoted by Leibfried and Ludwig for lead: 

Cu=5.63 X1011 ergs/cm3, 

Ci2=4.59X 1011 ergs/cm3, (6.15) 

C44=1.97X1011 ergs/cm3. 

We accordingly used the bulk modulus as a third ex­
perimental result in determining the parameters of our 
model since this represents an average of the elastic 
constants which does not explicitly display the special 
relations given by Eqs. (6.14). The theoretical expres­
sion for the bulk modulus in the harmonic approxima­
tion is 

4 1 
B = UCn+2C12) = *"(f0) . (6.16) 

3v2 f0 

The three equations, (6.12), (6.13), and (6.16) suffice 
to determine the values of the three parameters f0, 
<£"(f0), and 0"'(fo). The values of the experimental 
data used in these calculations were 

rfe/dr=2.91Xl0-y°K, (6.17a) 

U= 3.49993X10-8 cm at 273°K, (6.17b) 

B=4.94X1011 erg/cm3. (6.17c) 
19 G. Leibfried and W. Ludwig, in Solid State Physics, edited by 

F. Seitz and D. Turnbull (Academic Press Inc., New York, 1961) 
Vol. 13, p. 275. ' h 
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The value of dt/dT, Eq. (6.17a), was obtained from the 
data of Feder and Nowick20 in a temperature range 
where the dependence of e on T is linear. The value of 
ro is based on unpublished work of Boiling et al.21 The 
value of B used was obtained from the results of Leib-
fried and Ludwign quoted in Eq. (6.15). 

The values of f0, *"(fo), and <£'"(fo) obtained in this 
way are 

fo= 3.4723 X10-8 cm, (6.18a) 

4>"(f0) = 1.8194X 104 erg/cm2, (6.18b) 

0"'(fo) = -9.6929X1012 erg/cm3. (6.18c) 
We have obtained these values without making any 

assumptions about the analytic form of 4>(r). To obtain 
the fourth derivative, however, we assumed a Morse 
potential, 

4>(r) = D£(T*i*-™-l)*-l'], (6.19) 

in terms of which 
«"(fo) = 2a2A 

4/"(r0)=~6a3A (6.20) 
<£iv(fo) = 14a4Z). 

The ratios 

* , / / ( fo) /^(fo)=-3a, « iv(fo)/0 , / '(fo)=-7a, (6.21) 

together with Eq. (6.18) suffice to determine <£iv(f0). 
We obtained in this way 

«iv(f0) = 4.016Xl021 erg/cm4. (6.18d) 

The values of *"(fo), 0"'(fo), and <£iv(f0) obtained in 
this way differ somewhat from the values obtained in 
reference 12 by a different way of fitting the experi­
mental data. The qualitative features of the results 
obtained in reference 12 are, however, not affected if 
the present values of the potential derivatives are used 
instead. 

Before substituting the values given by Eq. (6.18) 
into Eq. (6.11) we introduce two results which will 
simplify the form of the final answer. It is convenient 
to multiply and divide K by a0, where a0 is some char­
acteristic lattice spacing. What we choose is somewhat 
immaterial because the result is independent of a0, but 
we have adopted for ao the value of the lattice parameter 
at room temperature,22 

a0= 4.9495X10-8 cm. (6.22) 

Secondly, it is convenient to introduce a character­
istic temperature. We have chosen to use ©<», the limit­
ing high-temperature value of the equivalent Debye 
characteristic temperature, which is defined by23 

0*= (V£)[ (5 /3)M 2 ] 1 / 2 . (6.23) 
20 R. Feder and A. S. Nowick, Phys. Rev. 109, 1959 (1958). 
21 G. F. Boiling, T. B. Massalski, and C. J. McHargue (private 

communication). 
22 C. S. Barrett, Structure of Metals (McGraw-Hill Book Com­

pany, Inc., New York, 1952), p. 647. 
28 C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952). 
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In Eq. (6.24) JU2 is the second moment of the frequency 
spectrum of the harmonic crystal. For the present 
model it is 

M2 = 40"(fo)/M. (6.24) 

The value of 0* obtained with the results of Eq. (6.18) 
is 

000=143.4°^ (6.25) 

We can now rewrite Eq. (6.11) as 

T /T\2 

2M= (KaQy—1.8616X 10~4+ Oca0)
2( — ) 

X[0.1438Xl0-4-0.1118X10~4+0.0579Xl0-4] 

+ a 0
4 i> 4 - (Ks4+Ky

4+K,4)](—) 

X[1.5428-1.4877]XlO-n (6.26) 

= («ao)2f—V-8616 

X10-4! 1+0.0483^— \ \ . (6.27) 

The order of the terms in Eq. (6.26) is the same as in 
Eq. (6.11). 

In writing Eq. (6.27) we have omitted the anomalous 
contribution to 2M. This was done because even in the 
most optimistic case its contribution to 2M for the 
present choice of force constants is quite negligible. 
We thus are led to the interesting conclusion that to a 
very good approximation the Debye-Waller factor for 
an anharmonic crystal is still given by the expression 

e~2M= exp[ - <(K- U)2)] , (6.28) 

where the thermal average is now to be carried out in 
the canonical ensemble of the anharmonic crystal. 
Because of the extreme complexity of the sums 2M3 and 
2MA which give rise to the anomalous terms it is diffi­
cult to estimate how general this conclusion is. How­
ever, the present result for 2M3+2M4 could be in­
creased by a factor of 15 and it would still represent no 
more than 10% of the contribution of the remaining 
anharmonic terms to 2M at the melting temperature 
of lead. Thus, assuming it were possible to increase the 
contribution of the anomalous terms to 2M by this 
factor, by some different way of determining the values 
of the derivatives of the interatomic potential, without 
increasing at the same time the contribution of the 
remaining anharmonic terms, they could still be safely 
neglected. Moreover, since our model was designed to 
reproduce several of the thermal and elastic properties 
of lead, it does not seem likely that another reasonable 
way of determining the potential parameters would 
lead to such a large relative increase in the contribu­
tions of 2MZ+2MA as would be required to make them 
non-negligible. 
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From its definition, Eq. (1.2), we see that we can 
express K2 as 

**=16ir*(siiitfA)2- (6.29) 

In writing this result we have used the fact that 
cos(s,so) = cos20, where 20 is the usual scattering angle. 
We can accordingly rewrite Eq. (6.27) as 

aosin0\2/ T 
2M=16TT 2 ( J f — J1.8616 

Xl0-4 |l+0.0483( — 

vn. DISCUSSION 

)}• 
(6.30) 

The numerical results for the exponent of the Debye-
Waller factor obtained in the preceding section, Eqs. 
(6.27) or (6.30), indicate that for our model of lead the 
anharmonic contributions to 2M are of the order of 
9% of its value at room temperature, and increase as 
we go to higher temperatures. This seems to be of a 
magnitude which should be readily measurable either 
by x-ray diffraction, elastic neutron scattering, or 
Mossbauer effect, experiments. 

In the Debye approximation the expression for 2M 
in the high-temperature limit is given by1 

2M= \.6^{wB/\)*3VT/Mk%tf, (7.1) 

where ®M is the so-called x-ray Debye characteristic 
temperature. Comparison of Eqs. (7.1) and (6.30) 
shows that we can express our results in the Debye 
form if we replace ®M by a temperature-dependent 
characteristic temperature ®M(T), which is given by 

1 Mk a0
2 

-= 0.6205 X10"4 

®M*(T) » ©oc 
1+0.0483-

©oc 
(7.2) 

This result shows that if the experimental determina­
tions of the Debye-Waller factor at high temperatures 
are analyzed in terms of the Debye expression (7.1), 
it will be found that the x-ray Debye © decreases with 
increasing temperature. This result is opposite from the 
observed behavior of the specific heat Debye 0 for 
lead, which increases with increasing temperature.24,12 

The general expression for ®M(T) obtained from 
Eq. (6.11) is given by 

1 
_ Q 1397 

fe2 M 

e*»(r) ¥ *"(f0) 

X 
I r i>"'to>)]2 

1+kT] 0.3508 
1 L i>"(fo)]3 

*iv(r0) 
_n.2s 

Lr(h)l ]}• (7.3) 

24 G. K. Horton and H. Schiff, Proc. Roy. Soc. (London) 
A250, 248 (1959). 

The analysis of experimental determinations of the 
Debye-Waller factor with the aid of Eq. (7.3) should 
already provide some interesting results concerning the 
third and fourth derivatives of the interatomic potential 
in the crystal being studied. In particular, in the 
preceding section we have been able to estimate <£"(fo) 
and <t>"'(fa) without making any assumptions about the 
analytic form of <£(r). Measurements of the temperature 
dependence of 2M together with these results and Eq. 
(7.3) would enable us to determine 0iv(fo) without 
having to assume a Morse potential, as we have done 
here. At the same time, comparison of the value of 
<t>w(fo) obtained experimentally in this way with the 
value quoted in Eq. (6.18d) would indicate how appli­
cable a Morse potential is to lead. Eventually, through 
the use of more sophisticated crystal models, measure­
ments of the Debye-Waller factor of crystals can become 
a very useful tool in the study of the anharmonic 
properties of solids. 

APPENDIX A 

We derive here the result expressed by Eq. (3.12). 
The eigenvalue equation for the normal mode fre­
quencies can be expressed as 

E Dxy(k)eu(kj)=a>>(kj)ex(kj), (Al) 

so that 
E ex(kj)Dxy(k)ey(kj)=co2(k/). (A2) 

The elements of the dynamical matrix for the present 
model are given explicitly by12 

2 *"(r0) 
D*y(k)= E *oV sin2[>k-x(0], (A3) 

M r0
2 i 

where the sum over / runs over the twelve nearest 
neighbors to a given atom. Combining Eqs. (A2) and 
(A3) we have 

E E lxolex(kj)Jy0
ley(kj)l sin2|>k-x(0] 

l xy 

M r0
2 

«»(ki). 
2 *"(r«) 

We now divide both sides of this equation by w4(k/) 
and sum over k and j to obtain 

Zxaiex(kj)Jj0iey(kj)-] 
T.Y.T. — sin*|>k. x(0 J 

i k/ xy 01* (kj) 

M r0
2 1 

= Z • (A4) 
2 *"(f«)*/«»(kj) 

The sums over k, j , x, and y on the left-hand side of 
this equation are readily found to be independent of /. 
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We thus obtain the result that 

Les(kj)+ey(kj)J 
E 

«4(k/) 
sin2[^irao (&*+ ky)~\ 

M 1 

E- (A5) 
12*"(r0) w o^(kj) 

If we multiply this result by /eW we obtain Eq. (3.11). 

APPENDIX B 

Since it follows simply from our analysis, we derive 
here the formal expression for the intensity of x rays 
scattered by one-phonon processes. Our starting point 
is Eq. (2.12) together with Eqs. (1.13), (2.21), and 
(2.22). What we require are those terms in the exponent 
of (exp{ tic • [u(/) — u (/')!}) which depend on / and / only 
in the combinations exp{27rik-[x(/) — x(/')]} and 
exp{ — 2irik-[x(0 — x ( 0 ] } , where k is a typical wave 
vector. We make the approximation from the outset 
of neglecting the contributions from the anomalous 
terms, since if they are small in 2M they will be small 
here as well. 

In the harmonic approximation the terms we require 
are given by the exponent of the second factor in Eq. 
(1.13) which we write as 
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The desired terms arising from the term — $A in the 
exponent of (exp{iK-[u(/) — u(/ ')]}) are obtained by 
multiplying out the product of A{kj) factors which 
appears in it, using Eq. (2.4). We find that the terms 
we want are 
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where we have used the symmetry of the summand in 
the {(kiji)} to combine terms. 

In a similar way we find that the terms of the form 
which we require which come from —/SAJF in the ex­

ponent of Eq. (2.12) are 
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If we combine the results of this Appendix with those 
of the text, we find that the thermal average of / given 
by Eq. (1.1) can be expressed as 

(I) = e-2ME e x p ^ K - W O - x t / ' ) ] } ^ . (B4) 
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If we expand e2W in powers of 2W, the contribution to 
(/) from the term containing (l/n))(2W)n is propor­
tional to the intensity of x rays scattered by an n-
phonon process where the terminology indicates that 
the wave describing the x rays couples directly to n 
phonons of the harmonic crystal. Since we are interested 
in the intensity due to one-phonon processes we break 
off the expansion of #w after the second term with the 
result that 
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The first term in this expansion is just the Laue 
interference function modified by the effects of the 
thermal vibrations. The second term gives the con­
tribution to the scattered intensity from the one-
phonon processes. For convenience we have expressed 
the scattering vector K in these expressions by 

K=2xk. (B7) 
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The expression for I\ becomes 
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(kTY 
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It should be remarked that for Bravais crystals the 
coefficient $(kiji; 2̂̂ *2; k3j3) is purely imaginary. This 
result follows from the fact that 

$(kiji; k2i2; k3 i3)=$*(-kiyi; -k 2 j2 ; -ksjs), 

together with the result that 

$(—kiji; - k 2 j 2 ; - k 3 j 3 )= -3>(kiji; k2 j2 ; k3j3), 

which is a consequence of the transformation properties 

of the third-order atomic force constants under the 
inversion operation. This means that the second term 
in Eq. (B8) is real, as it must be. 

Although the result given by Eq. (B8) looks cumber­
some, its evaluation as a function of k for a simple 
model of a crystal does not appear to be out of the 
question. A correction for thermal expansion can also 
be applied to the first term of this result, but we have 
not done so here. 


